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• Previously, RLHF is widely used for the post-training stage of large language 
models (LLMs)

• They always use a trained (process/outcome) reward model for providing 
reward signal in RLHF, which may suffer from several issues:
• Reward hacking
• Accuracy of the reward model is not that high
• High training cost
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models (LLMs)

• They always use a trained (process/outcome) reward model for providing 
reward signal in RLHF, which may suffer from several issues:
• Reward hacking
• Accuracy of the reward model is not that high
• High training cost

• RLVR (Reinforcement Learning with Verifiable Reward) is becoming more 
popular nowadays for training reasoning LM. It only requires a rule-based 
outcome reward
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Lambert, Nathan, et al. "Tulu 3: Pushing Frontiers in Open Language Model Post-Training" arXiv preprint arXiv:2411.15124 (2024).

• RLVR is widely used in 
improving LLM performance in 
reasoning tasks (math, code, 
etc.)

• Use verifiable outcome reward 
in RL training (e.g. 0-1 
correctness reward for math 
data)
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Guo, Daya, et al. "Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning." arXiv preprint arXiv:2501.12948 (2025).

• Used in advanced 
reasoning LLM like 
DeepSeek-R1, kimi-1.5, 
etc.

• Combined with RL 
algorithms like PPO and 
GRPO.
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Guo, Daya, et al. "Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning." arXiv preprint arXiv:2501.12948 (2025).

GRPO:

• 𝑞: question from dataset.
• 𝑜𝑖: 𝑖-th generated outputs 

from old policy model 𝜃𝑜𝑙𝑑
• 𝐺: group size
• 𝜖: clipping hyperparameter
• 𝑟𝑖: reward for 𝑜𝑖
• 𝐴𝑖: group advantage for 𝑜𝑖
• 𝐷𝐾𝐿: KL divergence 

between current policy 𝜃
and reference policy 𝜃𝑟𝑒𝑓.
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Yu, Qiying, et al. "Dapo: An open-source llm reinforcement learning system at scale." arXiv preprint arXiv:2503.14476 (2025).

Liu, Zichen, et al. "Understanding r1-zero-like training: A critical perspective." arXiv preprint arXiv:2503.20783 (2025).

• Many recent works focus 
on designing new RL 
algorithms:

REINFORCE++, VinePPO, 
VC-PPO, VAPO, DAPO, Dr. 
GRPO, GRPO+, SRPO, 
EMPO, …

• It’s relatively 
underexplored in how data
affects RLVR 
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To what extent can we reduce the training dataset for RLVR
while maintaining comparable performance compared to using 
the full dataset?

Q:
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Mathematical reasoning tasks:  
• MATH500
• AIME2024
• AIME2025
• AMC2023
• Minerva Math
• OlympiadBench

Non-mathematical reasoning tasks:
• ARC-Easy/Challenge
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Mathematical reasoning tasks:  
• MATH500
• AIME2024
• AIME2025
• AMC2023
• Minerva Math
• OlympiadBench

Non-mathematical reasoning tasks:
• ARC-Easy/Challenge

Example from MATH500:
Convert the point $(0,3)$ in 
rectangular coordinates to polar 
coordinates. Enter your answer in the 
form $(r,\theta),$ where $r > 0$ and 
$0 \le \theta < 2 \pi.$
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Mathematical reasoning tasks:  
• MATH500
• AIME2024
• AIME2025
• AMC2023
• Minerva Math
• OlympiadBench

Non-mathematical reasoning tasks:
• ARC-Easy/Challenge

Example from ARC-Challenge:
George wants to warm his hands quickly 
by rubbing them. Which skin surface 
will produce the most heat?

A. Dry palms         
B. Wet palms
C. Palms covered with oil
D. Palms covered with lotion
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• Model: Qwen2.5-Math-1.5B,         Data Pool: 1.2k DeepScaleR-subset (DSR-sub)

• 1-shot RLVR works as well as 1.2k DSR-sub dataset (which contain that one example)
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• Improves a lot compared from base model on 6 math reasoning benchmarks
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• 1-shot RLVR with math example can even improve model performance on 
non-math tasks (ARC-Easy/Challenge), even better than full-set RLVR.
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• We follow the default setup of verl, which include three losses by default

• Policy gradient loss: normal GRPO loss
• KL divergence loss (𝛽 > 0)
• Entropy loss (𝛼 < 0): per-token entropy, for encouraging exploration

Sheng, Guangming, et al. "Hybridflow: A flexible and efficient rlhf framework." arXiv preprint arXiv:2409.19256 (2024).
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Motivation: Previous work shows that 

• the variance of the reward signal is critical for RL training [1]
• choosing problems with medium difficulty will be better [2, 3]

We design a score named historical variance score to rank the data

[1] Razin, Noam, et al. "What makes a reward model a good teacher? an optimization perspective." arXiv preprint arXiv:2503.15477 (2025).

[2] Yu, Qiying, et al. "Dapo: An open-source llm reinforcement learning system at scale." arXiv preprint arXiv:2503.14476 (2025).

[3] Li, Xuefeng, Haoyang Zou, and Pengfei Liu. "Limr: Less is more for rl scaling." arXiv preprint arXiv:2502.11886 (2025).
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(1) Train RLVR for E epochs on full 
dataset, obtain historical training acc 
for each example 𝑖.

(2) Rank the data by their historical 
variance of acc.
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(1) Train RLVR for E epochs on full 
dataset, obtain historical training acc 
for each example 𝑖.

(2) Rank the data by their historical 
variance of acc.

This criterion is not necessarily 
optimal! 1-shot RLVR works for a lot 
of examples.
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• We copy the single example many
times to fill the entire training 
batch (e.g. 128)

• (just because verl requires at least 
one example allocated to each 
GPU)



Dissection of Selected Examples
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• Not-so-difficult problems: initial model is already capable of sampling 
correct answers
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• Almost all examples can be used in 1-shot RLVR
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• 1-shot RLVR also works for PPO



A Universal Phenomenon
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• 1-shot also works for Qwen2.5-Math-1.5/7B, Llama-3.2-3B-
Instruct, and DeepSeek-R1-Distill-Qwen-1.5B
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• Training accuracy saturates (reaches near 100% quickly)
• Test performance continues improving! (Even after overfitting training example)
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• Step 1860: outputs overfits training example, but performs well on test data
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• (1) Training example from one domain improves performance in all other domains



Cross-Domain Generalization
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• (2) test data that has the same category as training example does not necessarily 
yield better improvement



More Frequent Self-Reflection on Test Data
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• The response length of 1-shot RLVR increases

• On test tasks, # of reflection words (e.g. “recheck”) increase.



Ablation Study
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(1) The improvement of 1(few)-shot RLVR mainly attributes to policy loss 
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(2) post-saturation is different from “grokking”, which is highly depend on weight decay
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(3) Adding proper entropy loss can further improve performance based on policy loss.
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(3) Adding proper entropy loss can further improve performance based on policy loss. 
It can be important for post-saturation generalization, showing the importance of 
encouraging exploration



Ablation Study
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(4) Simply adding entropy loss alone can still improve model performance.
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(4) Simply adding entropy loss alone can still improve model performance. 
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(4) Simply adding entropy loss alone can still improve model performance. So when 
the label is wrong, model still has some improvement from 1-shot RLVR. 
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• Only format reward can improve a lot on Qwen2.5-Math-1.5B
• Still has a gap with outcome reward
• (These two holds for both full-set RLVR and 1-shot RLVR!)
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• Fixing format and improving general reasoning happen at the same time
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• Analysis: Qwen2.5-Math families have a lot of repetitive outputs, which results that 
fixing format itself brings lots of improvement

• Qwen2.5-Math-1.5B: ~40% outputs contain infinite loop output in MATH500!
• Qwen2.5-Math-7B: ~20% outputs contain infinite loop output in MATH500!
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• Analysis: Qwen2.5-Math families have a lot of repetitive outputs, which results that 
fixing format itself brings lots of improvement

• Qwen2.5-Math-1.5B: ~40% outputs contain infinite loop output in MATH500!
• Qwen2.5-Math-7B: ~20% outputs contain infinite loop output in MATH500!

Maybe in the future, a necessary baseline will be RLVR with format reward 
(or strongest prompt)



Pi1 for in-context learning
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• In-context learning: add a “Question-Answer example” (here is pi1) before 
evaluating downstream question

<|im_start|>system
Please reason step by step, and put your final answer within \boxed{}.<|im_end|>
<|im_start|>user
Question: The pressure \( P \) exerted by wind on a sail varies jointly as the area \( A \) of …
Answer: Given:
- \( P \propto A \cdot V^3 \)
- \( P = k \cdot A \cdot V^3 \) where \( k \) is the constant of proportionality. Using the given data:
…
Therefore, the wind velocity when the pressure on \( 4 \) square feet of sail is \( 32 \) pounds is approximately 
\( 12.7 \) miles per hour.

Question: Find the sum of all integer bases $b>9$ for which $17_{b}$ is a divisor of $97_{b}$.
Answer:<|im_end|>
<|im_start|>assistant
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• Pi1 can even improve Qwen2.5-Math-7B’s MATH500 from 51.0 -> 75.4, and 
OlympiadBench from 18.2 -> 41.3 with in-context learning!!

• Perform much better than Qwen’s official 4 examples on these two models



Pi1 for in-context learning
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Still tricky:

• Not work for all models, like fail on Qwen2.5-Math-72B and Llama3.2-3B-
Instruct (slightly worse than Qwen’s official 4 examples)

• Highly example-dependent. Pi13 works well on RLVR, but fail on in-context 
learning (worse than original zero-shot learning)



Application: Does RLVR has high label robustness?
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• In RLVR training, 1100 data with wrong labels + 100 data with correct labels can 
performs worse than 1 data with correct label.



Discussion
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• Base models already has strong reasoning capability, and its prior affects 
a lot for the RLVR stage.

• How to select/curate proper data for RLVR is critical 
• 1-shot RLVR works does not necessarily means that scaling RL dataset 

is useless

• How to understand 1-shot RLVR and post-saturation generalization?
• policy loss has implicit generalization

• Better exploration (entropy loss is unstable)。

• Other domain (code) and application (label robustness)
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Spurious Reward & Data Contamination 
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Format reward baseline for Minerva and aime25:        24.3 & 6.7



Spurious Reward & Data Contamination 
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• I think data contamination indeed happens, but it would not make 1-
shot RLVR’s conclusion fail.

• Mid-training or pretraining with open-source training data is really 
important for research.
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