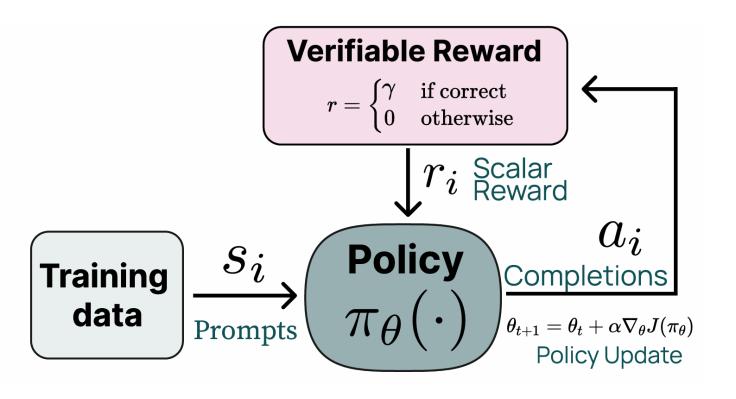
Reinforcement Learning for Reasoning in Large Language Models with *One* Training Example

Yiping Wang


08-05-2025

University of Washington & Microsoft

- Previously, RLHF is widely used for the post-training stage of large language models (LLMs)
- They always use a trained (process/outcome) reward model for providing reward signal in RLHF, which may suffer from several issues:
 - Reward hacking
 - Accuracy of the reward model is not that high
 - High training cost

- Previously, RLHF is widely used for the post-training stage of large language models (LLMs)
- They always use a trained (process/outcome) reward model for providing reward signal in RLHF, which may suffer from several issues:
 - Reward hacking
 - Accuracy of the reward model is not that high
 - High training cost
- RLVR (Reinforcement Learning with Verifiable Reward) is becoming more popular nowadays for training reasoning LM. It only requires a rule-based outcome reward

- RLVR is widely used in improving LLM performance in reasoning tasks (math, code, etc.)
- Use verifiable outcome reward in RL training (e.g. 0-1 correctness reward for math data)

- Used in advanced reasoning LLM like DeepSeek-R1, kimi-1.5, etc.
- Combined with RL algorithms like PPO and GRPO.

$$\begin{split} \mathcal{J}_{GRPO}(\theta) &= \mathbb{E}[q \sim P(Q), \{o_i\}_{i=1}^G \sim \pi_{\theta_{old}}(O|q)] \\ &\frac{1}{G} \sum_{i=1}^G \left(\min\left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{old}}(o_i|q)} A_i, \operatorname{clip}\left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{old}}(o_i|q)}, 1 - \varepsilon, 1 + \varepsilon\right) A_i \right) - \beta \mathbb{D}_{KL}\left(\pi_{\theta}||\pi_{ref}\right) \right) \end{split}$$

$$\mathbb{D}_{KL}\left(\pi_{\theta}||\pi_{ref}\right) = \frac{\pi_{ref}(o_i|q)}{\pi_{\theta}(o_i|q)} - \log \frac{\pi_{ref}(o_i|q)}{\pi_{\theta}(o_i|q)} - 1,$$

$$A_i = \frac{r_i - \text{mean}(\{r_1, r_2, \cdots, r_G\})}{\text{std}(\{r_1, r_2, \cdots, r_G\})}.$$

$$\mathcal{J}_{GRPO}(\theta) = \mathbb{E}[q \sim P(Q), \{o_i\}_{i=1}^G \sim \pi_{\theta_{old}}(O|q)]$$

GRPO:

- q: question from dataset.
- o_i : i-th generated outputs from old policy model θ_{old}
- G: group size
- r_i : reward for o_i
- A_i : group advantage for o_i
- D_{KL} : KL divergence between current policy θ and reference policy θ_{ref} .

$$\mathbb{D}_{KL}\left(\pi_{\theta}||\pi_{ref}\right) = \frac{\pi_{ref}(o_i|q)}{\pi_{\theta}(o_i|q)} - \log \frac{\pi_{ref}(o_i|q)}{\pi_{\theta}(o_i|q)} - 1,$$

 $\frac{1}{G} \sum_{i=1}^{G} \left(\min \left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{old}}(o_i|q)} A_i, \operatorname{clip} \left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{old}}(o_i|q)}, 1 - \varepsilon, 1 + \varepsilon \right) A_i \right) - \beta \mathbb{D}_{KL} \left(\pi_{\theta} || \pi_{ref} \right) \right)$

$$A_i = \frac{r_i - \operatorname{mean}(\{r_1, r_2, \cdots, r_G\})}{\operatorname{std}(\{r_1, r_2, \cdots, r_G\})}.$$

 Many recent works focus on designing new RL algorithms:

> REINFORCE++, VinePPO, VC-PPO, VAPO, DAPO, Dr. GRPO, GRPO+, SRPO, EMPO, ...

 It's relatively underexplored in how data affects RLVR

$$\begin{split} \mathcal{J}_{\mathrm{DAPO}}(\theta) = & \quad \mathbb{E}_{(q,a) \sim \mathcal{D}, \{o_i\}_{i=1}^G \sim \pi_{\theta_{\mathrm{old}}}(\cdot|q)} \\ & \quad \left[\frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \min \left(r_{i,t}(\theta) \hat{A}_{i,t}, \ \mathrm{clip} \Big(r_{i,t}(\theta), 1 - \varepsilon_{\mathrm{low}}, 1 + \varepsilon_{\mathrm{high}} \Big) \hat{A}_{i,t} \Big) \right] \\ & \quad \mathrm{s.t.} \quad 0 < \left| \left\{ o_i \mid \mathtt{is_equivalent}(a, o_i) \right\} \right| < G. \end{split}$$

Dr. GRPO

GRPO Done Right (without bias)

$$\frac{1}{G} \sum_{i=1}^{G} \sum_{t=1}^{|\mathbf{o}_{i}|} \left\{ \min \left[\frac{\pi_{\theta}(o_{i,t}|\mathbf{q}, \mathbf{o}_{i,
where $\hat{A}_{i,t} = R(\mathbf{q}, \mathbf{o}_{i}) - \operatorname{mean}(\{R(\mathbf{q}, \mathbf{o}_{1}), \dots, R(\mathbf{q}, \mathbf{o}_{G})\}).$$$

Data Selection in RLVR

Q:

To what extent can we *reduce* the training dataset for RLVR while maintaining comparable performance compared to using the full dataset?

Data Selection in RLVR

Q:

To what extent can we *reduce* the training dataset for RLVR while maintaining comparable performance compared to using the full dataset?

ONE

Evaluation Dataset

Mathematical reasoning tasks:

- MATH500
- AIME2024
- AIME2025
- AMC2023
- Minerva Math
- OlympiadBench

Non-mathematical reasoning tasks:

ARC-Easy/Challenge

Evaluation Dataset

Mathematical reasoning tasks:

- MATH500
- AIME2024
- AIME2025
- AMC2023
- Minerva Math
- OlympiadBench

Non-mathematical reasoning tasks:

ARC-Easy/Challenge

Example from MATH500:

Convert the point \$(0,3)\$ in rectangular coordinates to polar coordinates. Enter your answer in the form $$(r,\theta),$$ where \$r>0\$ and $$0 \le \theta \le 1.$$

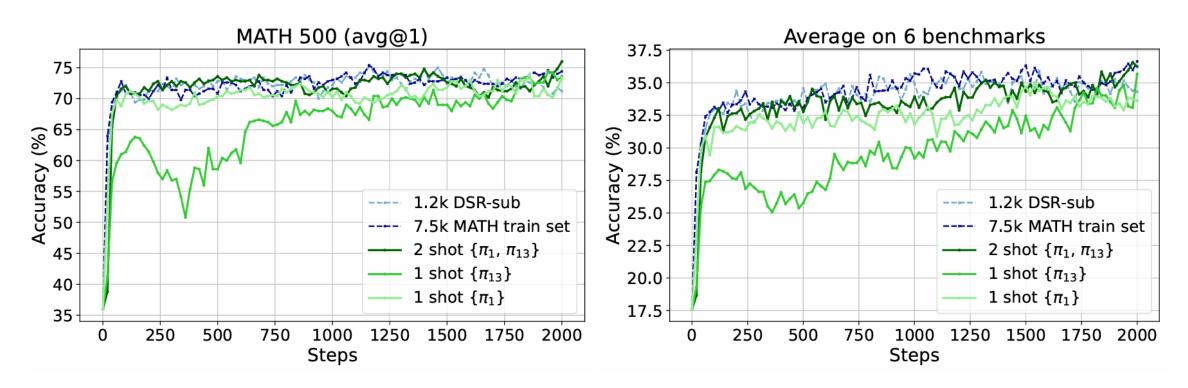
Evaluation Dataset

Mathematical reasoning tasks:

- MATH500
- AIME2024
- AIME2025
- AMC2023
- Minerva Math
- OlympiadBench

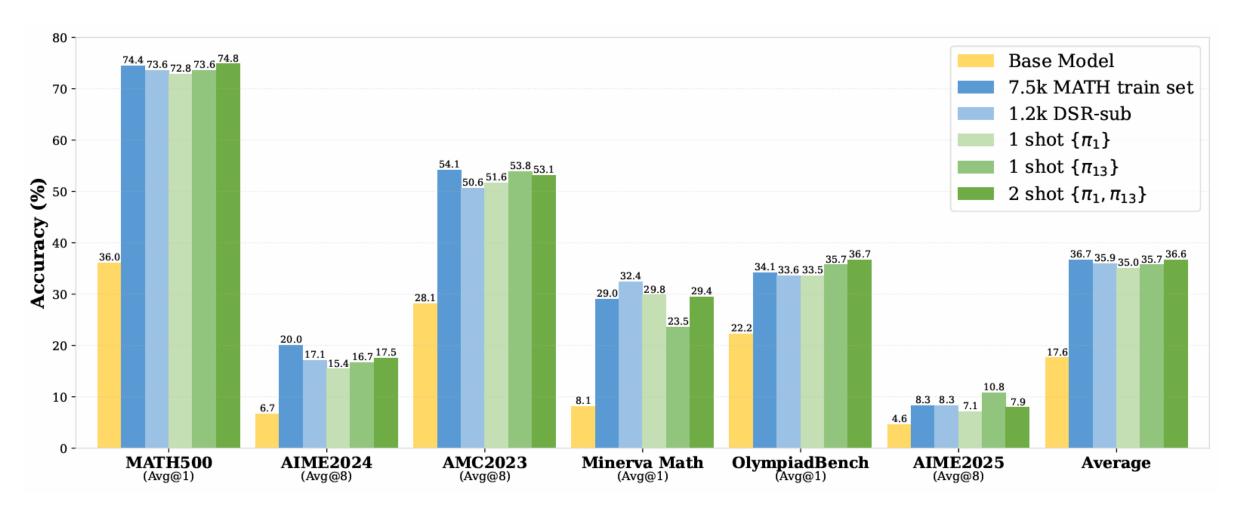
Non-mathematical reasoning tasks:

ARC-Easy/Challenge


Example from ARC-Challenge:

George wants to warm his hands quickly by rubbing them. Which skin surface will produce the most heat?

- A. Dry palms
- B. Wet palms
- C. Palms covered with oil
- D. Palms covered with lotion


One-Shot RLVR

- Model: Qwen2.5-Math-1.5B, Data Pool: 1.2k DeepScaleR-subset (DSR-sub)
- 1-shot RLVR works as well as 1.2k DSR-sub dataset (which contain that one example)

One-Shot RLVR

Improves a lot compared from base model on 6 math reasoning benchmarks

One-Shot RLVR

• 1-shot RLVR with math example can even improve model performance on non-math tasks (ARC-Easy/Challenge), even better than full-set RLVR.

Dataset	Size	ARC-E	ARC-C
Base	NA	48.0	30.2
MATH	7500	51.6	32.8
DSR-sub	1209	42.2	29.9
$\{\pi_1\}\ \{\pi_{13}\}\ \{\pi_1, \pi_{13}\}$	1	52.0	32.2
	1	55.8	33.4
	2	<u>52.1</u>	32.4

RLVR Loss

- We follow the default setup of verl, which include three losses by default
 - Policy gradient loss: normal GRPO loss
 - KL divergence loss ($\beta > 0$)
 - Entropy loss ($\alpha < 0$): per-token entropy, for encouraging exploration

$$\mathcal{L}_{\text{GRPO}}(\theta) = \mathbb{E}_{\substack{q \sim P(Q) \\ \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(O|q)}} \left[\mathcal{L}'_{\text{PG-GRPO}}(\cdot, \theta) + \beta \mathcal{L}'_{\text{KL}}(\cdot, \theta, \theta_{\text{ref}}) + \alpha \mathcal{L}'_{\text{Entropy}}(\cdot, \theta) \right]$$

Sheng, Guangming, et al. "Hybridflow: A flexible and efficient rlhf framework." arXiv preprint arXiv:2409.19256 (2024).

Motivation: Previous work shows that

- the variance of the reward signal is critical for RL training [1]
- choosing problems with medium difficulty will be better [2, 3]

We design a score named historical variance score to rank the data

- (1) Train RLVR for E epochs on full dataset, obtain historical training acc for each example i.
- (2) Rank the data by their historical variance of acc.

$$L_i = [s_{i,1}, \dots, s_{i,E}]$$

$$v_i := \operatorname{var}(s_{i,1}, \dots, s_{i,E})$$

$$\pi_j := \pi(j) = \underset{j}{\operatorname{arg sort}} \{ v_i : i \in [N] \}$$

- (1) Train RLVR for E epochs on full dataset, obtain historical training acc for each example i.
- (2) Rank the data by their historical variance of acc.

This criterion is **not necessarily optimal!** 1-shot RLVR works for a lot of examples.

$$L_i = [s_{i,1}, \dots, s_{i,E}]$$

$$v_i := \operatorname{var}(s_{i,1}, \dots, s_{i,E})$$

$$\pi_j := \pi(j) = \underset{j}{\operatorname{arg sort}} \{ v_i : i \in [N] \}$$

- We copy the single example many times to fill the entire training batch (e.g. 128)
- (just because verl requires at least one example allocated to each GPU)

$$L_i = [s_{i,1}, \dots, s_{i,E}]$$

$$v_i := \operatorname{var}(s_{i,1}, \dots, s_{i,E})$$

$$\pi_j := \pi(j) = \underset{j}{\operatorname{arg sort}} \{ v_i : i \in [N] \}$$

Dissection of Selected Examples

 Not-so-difficult problems: initial model is already capable of sampling correct answers

Prompt of example π_1 :

The pressure $\(P\)$ exerted by wind on a sail varies jointly as the area $\(A\)$ of the sail and the cube of the wind's velocity $\(V\)$. When the velocity is $\(8\)$ miles per hour, the pressure on a sail of $\(2\)$ square feet is $\(4\)$ pounds. Find the wind velocity when the pressure on $\(4\)$ square feet of sail is $\(32\)$ pounds. Let's think step by step and output the final answer within $\$

Ground truth (label in DSR-sub): 12.8.

Prompt of example π_{13} :

Given that circle \$C\$ passes through points P(0,-4), Q(2,0), and R(3,-1). \n\(1)\$ Find the equation of circle \$C\$. \n\(2)\$ If the line \$1: mx+y-1=0\$ intersects circle \$C\$ at points \$A\$ and \$B\$, and \$|AB|=4\$, find the value of \$m\$. Let's think step by step and output the final answer within \\boxed{}.

Ground truth (label in DSR-sub): $\frac{4}{3}$.

University of Washington — 23

A Universal Phenomenon

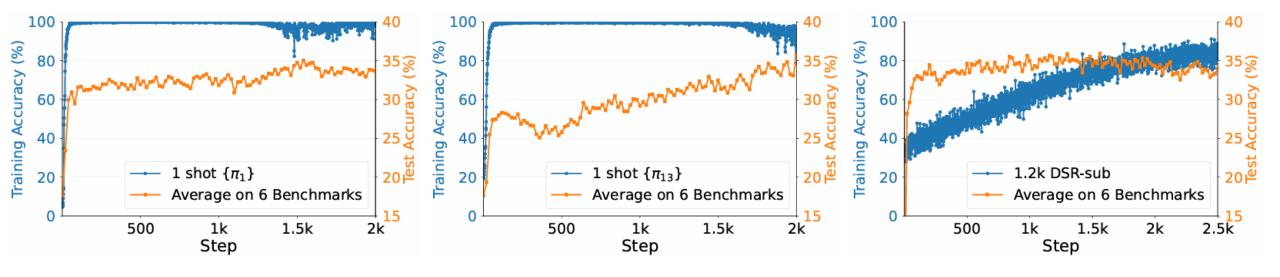
Almost all examples can be used in 1-shot RLVR

Dataset	Size	Step	Туре	ΔΙσ	C P	Geo	ΙΔΙσ	NT	Preala	Precal	MATH500	AIMF24
Dataset	Bize	Бир	Турс	Aig.	C. I.	GCO.	I. Aig.	14. 1.	Treatg.	1 iccai.	WIAT IISOO	AIMIEZ
Base	0	0	NA	37.1	31.6	39.0	43.3	24.2	36.6	33.9	36.0	6.7
MATH	7500	1160	General	91.1	65.8	63.4	59.8	82.3	81.7	66.1	75.4	20.4
DSR-sub	1209	1160	General	91.9	68.4	58.5	57.7	85.5	79.3	67.9	75.2	18.8
$\{\pi_1\}$	1	1860	Alg.	88.7	63.2	56.1	62.9	79.0	81.7	64.3	74.0	16.7
$\{\pi_2\}$	1	220	N. T.	83.9	57.9	56.1	55.7	77.4	82.9	60.7	70.6	17.1
$\{\pi_4\}$	1	80	N. T.	79.8	57.9	53.7	51.6	71.0	74.4	53.6	65.6	17.1
$\{\pi_7\}$	1	580	I. Alg.	75.8	60.5	51.2	56.7	59.7	70.7	57.1	64.0	12.1
$\{\pi_{11}\}$	1	20	N. T.	75.8	65.8	56.1	50.5	66.1	73.2	50.0	64.0	13.3
$\{\pi_{13}\}$	1	1940	Geo.	89.5	65.8	63.4	55.7	83.9	81.7	66.1	74.4	17.1
$\{\pi_{16}\}$	1	600	Alg.	86.3	63.2	56.1	51.6	67.7	73.2	51.8	67.0	14.6
$\{\pi_{17}\}$	1	220	C. P.	80.7	65.8	51.2	58.8	67.7	78.1	48.2	67.2	13.3
$\{\pi_{605}\}$	1	1040	Precal.	84.7	63.2	58.5	49.5	82.3	78.1	62.5	71.8	14.6
$\{\pi_{606}\}$	1	460	N. T.	83.9	63.2	53.7	49.5	58.1	75.6	46.4	64.4	14.2
$\{\pi_{1201}\}$	1	940	Geo.	89.5	68.4	58.5	53.6	79.0	73.2	62.5	71.4	16.3
$\{\pi_{1207}\}$	1	100	Geo.	67.7	50.0	43.9	41.2	53.2	63.4	42.7	54.0	9.6
$\{\pi_{1208}\}$	1	240	C. P.	58.1	55.3	43.9	32.0	40.3	48.8	32.1	45.0	8.8
$\{\pi_{1209}\}$	1	1140	Precal.	86.3	71.1	65.9	55.7	75.8	76.8	64.3	72.2	17.5
$\overline{\{\pi_1\dots\pi_{16}\}}$	16	1840	General	90.3	63.2	61.0	55.7	69.4	80.5	60.7	71.6	16.7
$\{\pi_1,\pi_2\}$	2	1580	Alg./N.T.	89.5	63.2	61.0	60.8	82.3	74.4	58.9	72.8	15.0
$\{\pi_1,\pi_{13}\}$	2	2000	Alg./Geo.	92.7	71.1	58.5	57.7	79.0	84.2	71.4	76.0	17.9

University of Washington 24

A Universal Phenomenon

1-shot RLVR also works for PPO


RL	Dataset	MATH	AIME	AMC	Minerva	Olympiad-	AIME	Avg.
Dataset	Size	500	2024	2023	Math	Bench	2025	
		Qwen2.5	-Math-1.5	5B [<mark>24]</mark> +	PPO			
NA	NA	36.0	6.7	28.1	8.1	22.2	4.6	17.6
DSR-sub	1209	72.8	19.2	48.1	27.9	35.0	9.6	35.4
$\{\pi_1\}$	1	72.4	11.7	51.6	26.8	33.3	7.1	33.8

A Universal Phenomenon

• 1-shot also works for Qwen2.5-Math-1.5/7B, Llama-3.2-3B-Instruct, and DeepSeek-R1-Distill-Qwen-1.5B

RL Dataset	Dataset Size	MATH 500	AIME 2024	AMC 2023	Minerva Math	Olympiad- Bench	AIME 2025	Avg.
		Qwen2.5	-Math-7B	[<mark>24</mark>] + G	RPO			
NA	NA	51.0	12.1	35.3	11.0	18.2	6.7	22.4
DSR-sub	1209	78.6	25.8	62.5	33.8	41.6	14.6	42.8
$\{\pi_1\} \\ \{\pi_1, \pi_{13}\} \\ \{\pi_1, \pi_2, \pi_{13}, \pi_{1209}\}$	1	79.2	23.8	60.3	27.9	39.1	10.8	40.2
	2	79.2	21.7	58.8	35.3	40.9	12.1	41.3
	4	78.6	22.5	61.9	36.0	43.7	12.1	42.5
Random $\{\pi_1,\ldots,\pi_{16}\}$	16 16	76.0 77.8	22.1 30.4	63.1 62.2	31.6 35.3	35.6 39.9	12.9 9.6	40.2 42.5
]	Llama-3.2-	3B-Instru	ıct [<mark>26</mark>] +	GRPO			
NA	NA	40.8	8.3	25.3	15.8	13.2	1.7	17.5
DSR-sub	1209	43.2	11.2	27.8	19.5	16.4	<u>0.8</u>	19.8
$ \{\pi_1\} $ $\{\pi_1, \pi_{13}\} $ $\{\pi_1, \pi_2, \pi_{13}, \pi_{1209}\} $	1	45.8	7.9	25.3	16.5	17.0	1.2	19.0
	2	49.4	7.1	31.6	18.4	19.1	0.4	21.0
	4	46.4	6.2	<u>29.1</u>	21.0	15.1	1.2	19.8

- Training accuracy saturates (reaches near 100% quickly)
- Test performance continues improving! (Even after overfitting training example)

University of Washington — 27

- Training accuracy saturates (reaches near 100% quickly)
- Test performance continues improving! (Even after overfitting training example)

Training Response	Evaluation Response (MATH500)
Problem: As shown in Table 1 Answer: 12.8	Problem : Find the roots of $(x - 3)^3 + (x - 7)^3 = (2x - 10)^3.$ Answer : 3, 5, 7
Step 0: "Step 1:\\[P = kAV^3\\]Step 2:\\[k = \\frac{4}{1024} = \\frac{1}{256} \\] Step 3:\\[V = \\sqrt[3]{2048} \\]\n\n\\[V = 12.88final answer is:\n\n\\[\\boxed{12.88} \\]"	Step 0: ""Find the roots of \$(x - 3)^3 + (x -7)^3 = (2x - 10)^3.\$.Highlight\n.
pressure $\ \ P \in \mathbb{P} = k \cdot A \cdot V^3 \in \mathbb{V} \$	Step 500: " simplifies to:\n\n\\[\n(x - 3)^3 + (x - 7)^3 = (2x - 10)((x - 3)^2 - (x - 3)(x - 7) + (x - 7)^2)\n\\]\n\nThis equation is true if \\(2x - 10 = 0\\) or if the expression \\((x - 3)^2 - (x - 3)(x - 7) + (x - 7)^2 = 0\\)So \\(x = 5\\) is a solutionSince the discriminant is negative, there are no real solutions to this quadratic equationthe final answer is:\n\n\\[\n\\]\n\\boxed{5}\n\\]"

- Training accuracy saturates (reaches near 100% quickly)
- Test performance continues improving! (Even after overfitting training example)

Step 1300: "First, substituting the initial known scenario conditions into the corresponding variant......\\[P = k \\cdot A \\cdot V^3 \\]\...From specific of \\(A = 2 \\), \\(V = 8 \\), \\(P = 4 \\),\n\nthen required equation will be line up out:\\[4 = k \\cdot 2 \\cdot 8^3...\\[4 = k \\cdot 2 \\cdot 512\\]\\\[4 = 1024k\\]\nthus solving can then seek toward \\(k \\):\\[k = \\frac{4}{1024} = \\frac{1}{256}\\] ...For a moment press onward investing concrete data to pinpoint...\\[32 = \\frac{1}{256} \\cdot 4 \\cdot V^3\\]...now simplification further solving thusly for final...\\[V^3 = 2048 \\] then calculate in:\\\[V = \\sqrt[3]{2048} = 12.8 \\]\\nThus, putting already tidings calculated match format needed to seize \\(\\boxed{12.8}..."

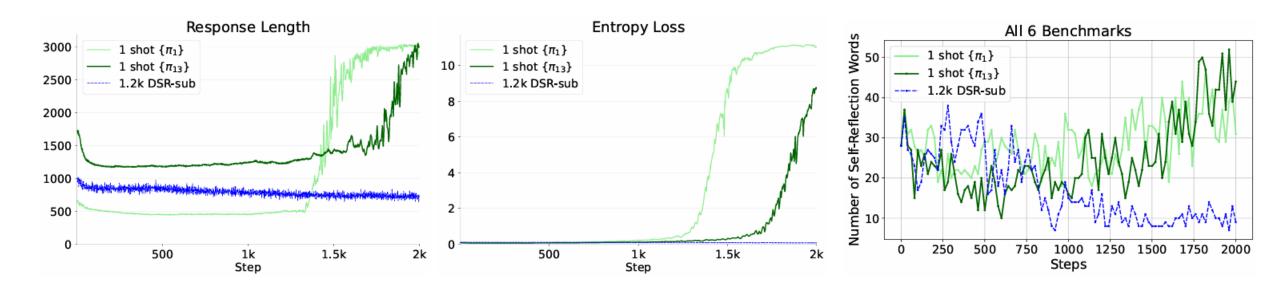
Step 1860: outputs overfits training example, but performs well on test data

Step 1860: "Let's solve the equation $\((x - 3)^3 + (x - 7)^3 = (2x - 10)^3\)$ step by step...we need to solve: $\n\n\[]$ $- 15x^2 + 71x - 105 = 0\n\]$ \(\n\) | \(

Cross-Domain Generalization

• (1) Training example from one domain improves performance in all other domains

Detect	LSizo	Ston	Type	Ala	C D	Coo	I Ala	NT	Dwoola	Dragal	MATHEON	A IME24
Dataset	Size	Step	Туре	Aig.	С. г.	Geo.	1. Aig.	11. 1.	Freaig.	Frecai.	MATH500	AINIE24
Base	0	0	NA	37.1	31.6	39.0	43.3	24.2	36.6	33.9	36.0	6.7
MATH	7500	1160	General	91.1	65.8	63.4	59.8	82.3	81.7	66.1	75.4	20.4
DSR-sub	1209	1160	General	91.9	68.4	58.5	57.7	85.5	79.3	67.9	75.2	18.8
$\{\pi_1\}$	1	1860	Alg.	88.7	63.2	56.1	62.9	79.0	81.7	64.3	74.0	16.7
$\{\pi_2\}$	1	220	N. T.	83.9	57.9	56.1	55.7	77.4	82.9	60.7	70.6	17.1
$\{\pi_4\}$	1	80	N. T.	79.8	57.9	53.7	51.6	71.0	74.4	53.6	65.6	17.1
$\{\pi_7\}$	1	580	I. Alg.	75.8	60.5	51.2	56.7	59.7	70.7	57.1	64.0	12.1
$\{\pi_{11}\}$	1	20	N. T.	75.8	65.8	56.1	50.5	66.1	73.2	50.0	64.0	13.3
$\{\pi_{13}\}$	1	1940	Geo.	89.5	65.8	63.4	55.7	83.9	81.7	66.1	74.4	17.1
$\{\pi_{16}\}$	1	600	Alg.	86.3	63.2	56.1	51.6	67.7	73.2	51.8	67.0	14.6
$\{\pi_{17}\}$	1	220	C. P.	80.7	65.8	51.2	58.8	67.7	78.1	48.2	67.2	13.3
$\{\pi_{605}\}$	1	1040	Precal.	84.7	63.2	58.5	49.5	82.3	78.1	62.5	71.8	14.6
$\{\pi_{606}\}$	1	460	N. T.	83.9	63.2	53.7	49.5	58.1	75.6	46.4	64.4	14.2
$\{\pi_{1201}\}$	1	940	Geo.	89.5	68.4	58.5	53.6	79.0	73.2	62.5	71.4	16.3
$\{\pi_{1207}\}$	1	100	Geo.	67.7	50.0	43.9	41.2	53.2	63.4	42.7	54.0	9.6
$\{\pi_{1208}\}$	1	240	C. P.	58.1	55.3	43.9	32.0	40.3	48.8	32.1	45.0	8.8
$\{\pi_{1209}\}$	1	1140	Precal.	86.3	71.1	65.9	55.7	75.8	76.8	64.3	72.2	17.5
$\overline{\{\pi_1\dots\pi_{16}\}}$	16	1840	General	I	63.2	61.0	55.7	69.4	80.5	60.7	71.6	16.7
$\{\pi_1,\pi_2\}$	2	1580	Alg./N.T.	89.5	63.2	61.0	60.8	82.3	74.4	58.9	72.8	15.0
$\{\pi_1,\pi_{13}\}$	2	2000	Alg./Geo.	92.7	71.1	58.5	57.7	79.0	84.2	71.4	76.0	17.9


Cross-Domain Generalization

• (2) test data that has the same category as training example does not necessarily yield better improvement

Dataset	Size	Step	Type	Alg.	C. P.	Geo.	I. Alg.	N. T.	Prealg.	Precal.	MATH500	AIME24
Base	0	0	NA	37.1	31.6	39.0	43.3	24.2	36.6	33.9	36.0	6.7
MATH DSR-sub	7500 1209	1160 1160	General General		65.8 68.4		59.8 57.7	82.3 85.5	81.7 79.3	66.1 67.9	75.4 75.2	20.4 18.8
$\frac{\{\pi_1\}}{\{\pi_2\}}$	1 1	1860 220	Alg. N. T.	88.7 83.9	57.9	56.1	62.9 55.7	79.0 77.4	82.9	64.3 60.7	74.0 70.6	16.7 17.1
$\{\pi_4\} \ \{\pi_7\} \ \{\pi_{11}\}$	1 1 1	80 580 20	N. T. I. Alg. N. T.	79.8 75.8 75.8	60.5	53.7 51.2 56.1	51.6 56.7 50.5	71.0 59.7 66.1	70.7	53.6 57.1 50.0	65.6 64.0 64.0	17.1 12.1 13.3
$\{\pi_{13}\}\ \{\pi_{16}\}\ \{\pi_{17}\}$	1 1 1	1940 600 220	Geo. Alg. C. P.	89.5	65.8 63.2	63.4	55.7 51.6 58.8	83.9 67.7 67.7		66.1 51.8 48.2	74.4 67.0 67.2	17.1 14.6 13.3
$\frac{\pi_{605}}{\{\pi_{606}\}}$	1 1 1	1040 460	Precal. N. T.		63.2	58.5	49.5	82.3 58.1	78.1	62.5 46.4	71.8	14.6 14.2
	1 1 1 1	940 100 240 1140	Geo. Geo. C. P. Precal.	67.7 58.1	68.4 50.0 55.3 71.1	43.9 43.9	53.6 41.2 32.0 55.7	79.0 53.2 40.3 75.8	63.4 48.8	62.5 42.7 32.1 64.3	71.4 54.0 45.0 72.2	16.3 9.6 8.8 17.5
$ \begin{cases} \pi_1 \dots \pi_{16} \\ \{\pi_1, \pi_2\} \\ \{\pi_1, \pi_{13}\} \end{cases} $	16 2 2	1840 1580 2000	General Alg./N.T. Alg./Geo.	90.3 89.5 92.7	63.2	61.0 61.0 58.5	55.7 60.8 57.7	69.4 82.3 79.0	74.4	60.7 58.9 71.4	71.6 72.8 76.0	16.7 15.0 17.9

More Frequent Self-Reflection on Test Data

- The response length of 1-shot RLVR increases
- On test tasks, # of reflection words (e.g. "recheck") increase.

(1) The improvement of 1(few)-shot RLVR mainly attributes to policy loss

Row	Policy Loss	Weight Decay	KL Loss	Entropy Loss	Label	Training Convergence	MATH 500	AIME 2024
1					12.8	NO	39.8	7.5
2	+				12.8	YES	71.8	15.4
3	+	+			12.8	YES	71.4	16.3
4	+	+	+		12.8	YES	70.8	15.0
5	+	+	+	+	12.8	YES	<u>74.8</u>	17.5
6	+	+	+	+, -0.003	12.8	YES	73.6	15.4
7	+			+	12.8	YES	75.6	<u>17.1</u>
8		+	+		12.8	NO	39.0	10.0
9		+	+	+	12.8	NO	65.4	7.1
10				+	12.8	NO	63.4	8.8
11	+	+	+	+	12.7	YES	73.4	17.9
12	+	+	+	+	4	YES	57.0	9.2
13	+	+	+	+	929725	NO	64.4	9.6

(2) post-saturation is different from "grokking", which is highly depend on weight decay

_	Row	Policy Loss	Weight Decay	KL Loss	Entropy Loss	Label	Training Convergence	MATH 500	AIME 2024
	1					12.8	NO	39.8	7.5
	2	+				12.8	YES	71.8	15.4
	3	+	+			12.8	YES	71.4	16.3
	4	+	+	+		12.8	YES	70.8	15.0
	5	+	+	+	+	12.8	YES	<u>74.8</u>	17.5
	6	+	+	+	+, -0.003	12.8	YES	73.6	15.4
	7	+			+	12.8	YES	75.6	<u>17.1</u>
	8		+	+		12.8	NO	39.0	10.0
_	9		+	+	+	12.8	NO	65.4	7.1
	10				+	12.8	NO	63.4	8.8
_	11	+	+	+	+	12.7	YES	73.4	17.9
	12	+	+	+	+	4	YES	57.0	9.2
	13	+	+	+	+	929725	NO	64.4	9.6

(3) Adding proper entropy loss can further improve performance based on policy loss.

	Row	Policy Loss	Weight Decay	KL Loss	Entropy Loss	Label	Training Convergence	MATH 500	AIME 2024
_	1					12.8	NO	39.8	7.5
	2	+				12.8	YES	71.8	15.4
	3	+	+			12.8	YES	71.4	16.3
	4	+	+	+		12.8	YES	70.8	15.0
	5	+	+	+	+	12.8	YES	<u>74.8</u>	17.5
ı	6	+	+	+	+, -0.003	12.8	YES	73.6	15.4
L	7	+			+	12.8	YES	75.6	<u>17.1</u>
	8		+	+		12.8	NO	39.0	10.0
_	9		+	+	+	12.8	NO	65.4	7.1
	10				+	12.8	NO	63.4	8.8
_	11	+	+	+	+	12.7	YES	73.4	17.9
	12	+	+	+	+	4	YES	57.0	9.2
	13	+	+	+	+	929725	NO	64.4	9.6

(3) Adding proper entropy loss can further improve performance based on policy loss. It can be important for post-saturation generalization, showing the importance of encouraging exploration

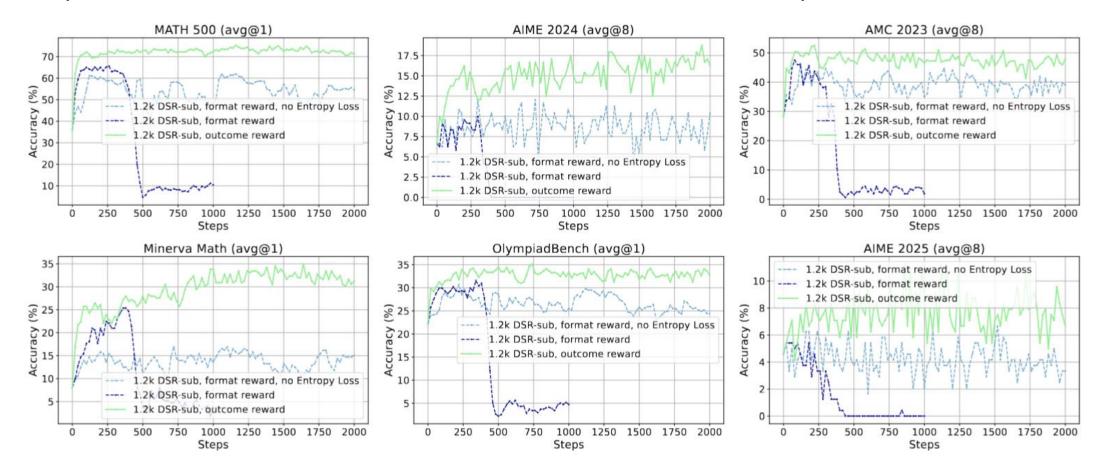
(4) Simply adding entropy loss alone can still improve model performance.

Row	Policy Loss	Weight Decay	KL Loss	Entropy Loss	Label	Training Convergence	MATH 500	AIME 2024
1					12.8	NO	39.8	7.5
2	+				12.8	YES	71.8	15.4
3	+	+			12.8	YES	71.4	16.3
4	+	+	+		12.8	YES	70.8	15.0
5	+	+	+	+	12.8	YES	<u>74.8</u>	17.5
6	+	+	+	+, -0.003	12.8	YES	73.6	15.4
7	+			+	12.8	YES	75.6	<u>17.1</u>
8		+	+		12.8	NO	39.0	10.0
9		+	+	+	12.8	NO	65.4	7.1
10				+	12.8	NO	63.4	8.8
11	+	+	+	+	12.7	YES	73.4	17.9
12	+	+	+	+	4	YES	57.0	9.2
13	+	+	+	+	929725	NO	64.4	9.6

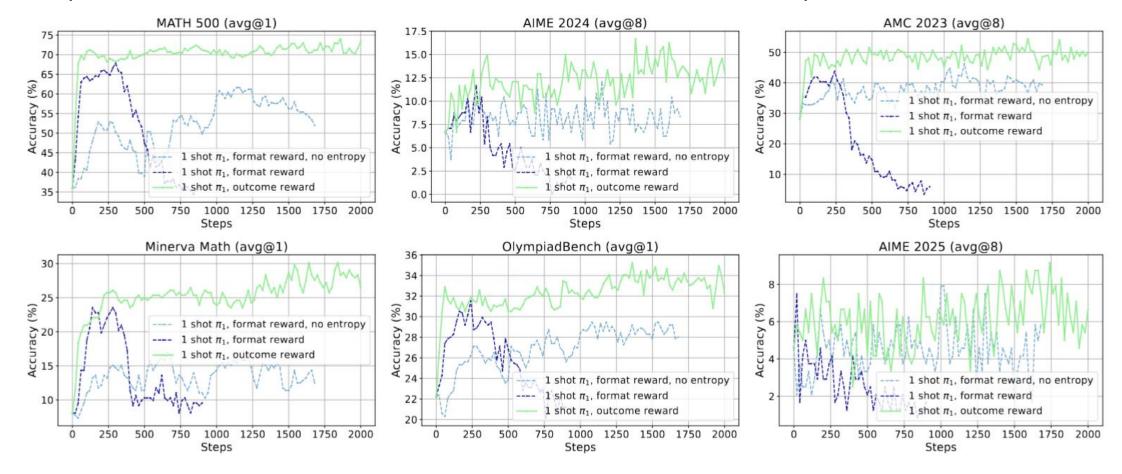
Ablation Study

(4) Simply adding entropy loss alone can still improve model performance.

Table 6: Entropy loss alone with π_1 can still improve model performance.


Model	MATH 500	AIME24 2024	AMC23 2023	Minerva Math	Olympiad- Bench	AIME 2025	Avg.
Qwen2.5-Math-1.5B	36.0	6.7	28.1	8.1	22.2	4.6	17.6
+Entropy Loss, Train 20 step	63.4	8.8	33.8	14.3	26.5	3.3	25.0
Llama-3.2-3B-Instruct	40.8	8.3	25.3	15.8	13.2	1.7	17.5
+Entropy Loss, Train 10 step	47.8	8.8	26.9	18.0	15.1	0.4	19.5
Qwen2.5-Math-7B	51.0	12.1	35.3	11.0	18.2	6.7	22.4 25.0
+Entropy Loss, Train 4 step	57.2	13.3	39.7	14.3	21.5	3.8	

Ablation Study


(4) Simply adding entropy loss alone can still improve model performance. So when the label is wrong, model still has some improvement from 1-shot RLVR.

Row	Policy Loss	Weight Decay	KL Loss	Entropy Loss	Label	Training Convergence	MATH 500	AIME 2024
1					12.8	NO	39.8	7.5
2	+				12.8	YES	71.8	15.4
3	+	+			12.8	YES	71.4	16.3
4	+	+	+		12.8	YES	70.8	15.0
5	+	+	+	+	12.8	YES	<u>74.8</u>	17.5
6	+	+	+	+, -0.003	12.8	YES	73.6	15.4
7	+			+	12.8	YES	75.6	<u>17.1</u>
8		+	+		12.8	NO	39.0	10.0
9		+	+	+	12.8	NO	65.4	7.1
10				+	12.8	NO	63.4	8.8
11	+	+	+	+	12.7	YES	73.4	17.9
12	+	+	+	+	4	YES	57.0	9.2
13	+	+	+	+	929725	NO	64.4	9.6

- Only format reward can improve a lot on Qwen2.5-Math-1.5B
- Still has a gap with outcome reward
- (These two holds for both full-set RLVR and 1-shot RLVR!)

- Only format reward can improve a lot on Qwen2.5-Math-1.5B
- Still has a gap with outcome reward
- (These two holds for both full-set RLVR and 1-shot RLVR!)

- Only format reward can improve a lot on Qwen2.5-Math-1.5B
- Still has a gap with outcome reward
- (These two holds for both full-set RLVR and 1-shot RLVR!)

Table 12: RLVR with format reward can still improve model performance significantly, while still having a gap compared with that using outcome reward. Here we consider adding entropy loss or not for format reward. Detailed results are also in Fig. 12 and Fig. 13.

Dataset	Reward Type	Entropy Loss	MATH 500	AIME 2024	AMC 2023	Minerva Math	Olympiad- Bench	AIME 2025	Avg.
NA	NA	NA	36.0	6.7	28.1	8.1	22.2	4.6	17.6
DSR-sub DSR-sub DSR-sub	Outcome Format Format	+ +	73.6 65.0 61.4	17.1 8.3 9.6	50.6 45.9 44.7	32.4 17.6 16.5	33.6 29.9 29.5	8.3 5.4 3.8	35.9 28.7 27.6
$\{\pi_1\}\ \{\pi_1\}\ \{\pi_1\}$	Outcome Format Format	+ +	72.8 65.4 61.6	15.4 8.8 8.3	51.6 43.8 46.2	29.8 22.1 15.4	33.5 31.6 29.3	7.1 3.8 4.6	35.0 29.2 27.6

Fixing format and improving general reasoning happen at the same time

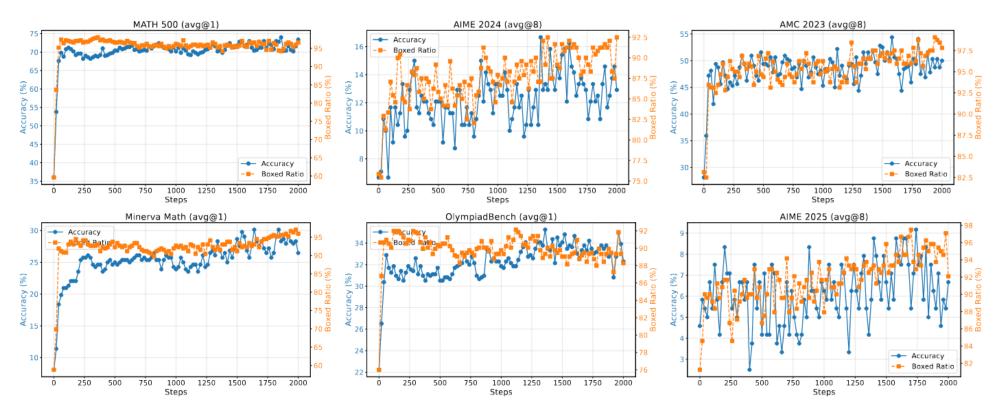


Figure 14: **Relation between the number of** \boxed{} and test accuracy. We can see that they have a strong positive correlation. However, after the number of \boxed{} enters a plateau, the evaluation results on some evaluation tasks continue improving (like Minerva Math, OlympiadBench and MATH500).

Fixing format and improving general reasoning happen at the same time

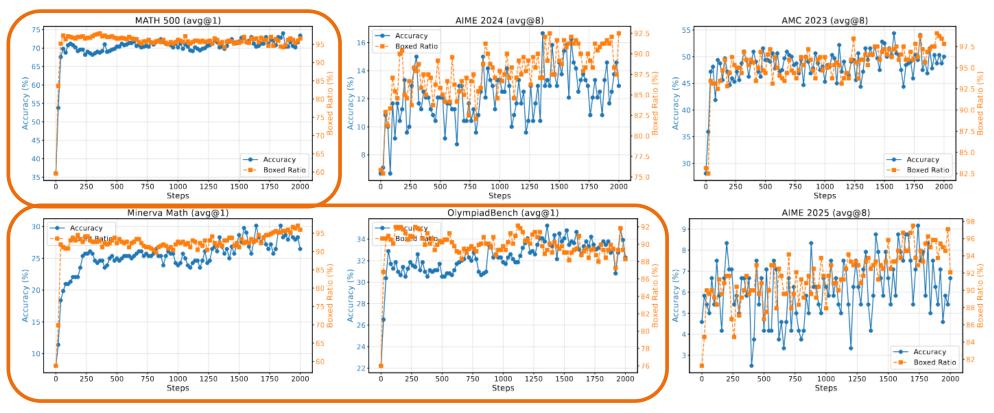


Figure 14: **Relation between the number of** \boxed{} and test accuracy. We can see that they have a strong positive correlation. However, after the number of \boxed{} enters a plateau, the evaluation results on some evaluation tasks continue improving (like Minerva Math, OlympiadBench and MATH500).

Fixing format and improving general reasoning happen at the same time

Table 14: **1-shot RLVR does not do something like put the answer into the** \boxed{}. "Ratio of disagreement" means the ratio of questions that has different judgement between Qwen-Eval and QwQ-32B judge. Here we let QwQ-32B judged based on if the output contain correct answer, without considering if the answer is put in the \boxed{}.

	Step0	Step 20	Step 60	Step 500	Step 1300	Step 1860
Ratio of	59.6%	83.6%	97.4%	96.6%	96.6%	94.2%
Acc. judge by Qwen-Eval Acc. judge by QwQ-32B	36.0 35.8	53.8 57.2	69.8 70.6	70.4 71.8	72.2 73.6	74.0 74.6
Ratio of disagreement	4.2%	5%	1.2%	1.4%	1.8%	1.8%

- Analysis: Qwen2.5-Math families have a lot of repetitive outputs, which results that fixing format itself brings lots of improvement
 - Qwen2.5-Math-1.5B: ~40% outputs contain infinite loop output in MATH500!
 - Qwen2.5-Math-7B: ~20% outputs contain infinite loop output in MATH500!

- Analysis: Qwen2.5-Math families have a lot of repetitive outputs, which results that fixing format itself brings lots of improvement
 - Qwen2.5-Math-1.5B: ~40% outputs contain infinite loop output in MATH500!
 - Qwen2.5-Math-7B: ~20% outputs contain infinite loop output in MATH500!

```
"gt": "9", "score": [false], "code": ["What is the largest 3-digit number that is a multiple of 12?
   gnore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-igno
ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ign
 gnore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-igno
ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ign
 ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ign
ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ign
 |gnore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ign
ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ign
   gnore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-igno
ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ign
 |gnore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ign
ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ign
 |gnore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ign
ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ign
ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ign
ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ign
ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ign
 gnore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-igno
 ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ign
   gnore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-igno
        gnore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-ignore\n-igno
```

- Analysis: Qwen2.5-Math families have a lot of repetitive outputs, which results that fixing format itself brings lots of improvement
 - Qwen2.5-Math-1.5B: ~40% outputs contain infinite loop output in MATH500!
 - Qwen2.5-Math-7B: ~20% outputs contain infinite loop output in MATH500!

'idx": 16, "contains": 0, "output": "\n\nThe ground truth is -50. The solution output is a list of repeated prompts and highlights but does not contain any numerical answer or result. There is no final swer provided in the solution to compare with the ground truth. [JUDGE]: NO", "gt": "-50", "score": [false], "code": ["Compute: \$1-2-3+4+5-6-7+8+9-10-11+\\dots +99-100\$...Highlight\n. Highlight\n.Highlightuser\nCompute: \$1-2-3+4+5-6-7+8+9-10-11+\\dots +99-100\$..Highlight\n.Highlightuser\nCompute: \$1-2-3+4+5-6-7+8+9-10-11+\\dots +99-100\$. ighlightassistant\nCompute: \$1-2-3+4+5-6-7+8+9-10-11+\\dots +99-100\$,.Highlight\n.Highligh 7+8+9-10-11+\\dots +99-100\$..Highlight\n.Highlightassistant\nCompute: \$1-2-3+4+5-6-7+8+9-10-11+\\dots +99-100\$..Highlight\n.Highlightuser\nCo dots +99-100\$..Highlight\n.Highlightassistant\nCompute: \$1-2-3+4+5-6-7+8+9-10-11+\\dots +99-100\$..Highlight"] idx": 17, "contains": 0, "output": "\n\n\nThe ground truth is π. The solution states the smallest possible value of c is -π/3. This answer is not mathematically equivalent to π. [JUDGE]: NO\n</

- Analysis: Qwen2.5-Math families have a lot of repetitive outputs, which results that fixing format itself brings lots of improvement
 - Qwen2.5-Math-1.5B: ~40% outputs contain infinite loop output in MATH500!
 - Qwen2.5-Math-7B: ~20% outputs contain infinite loop output in MATH500!

Maybe in the future, a necessary **baseline** will be RLVR with format reward (or strongest prompt)

Pi1 for in-context learning

 In-context learning: add a "Question-Answer example" (here is pi1) before evaluating downstream question

```
<|im start|>system
Please reason step by step, and put your final answer within \boxed{}.<|im_end|>
<|im start|>user
Question: The pressure \( P \) exerted by wind on a sail varies jointly as the area \( A \) of ...
Answer: Given:
- \( P \propto A \cdot V^3 \)
- \( P = k \cdot A \cdot V^3 \) where \( k \) is the constant of proportionality. Using the given data:
Therefore, the wind velocity when the pressure on (4) square feet of sail is (32) pounds is approximately
(12.7) miles per hour.
Question: Find the sum of all integer bases $b>9$ for which $17_{b}$ is a divisor of $97_{b}$.
Answer:<|im end|>
```

im start | >assistant

Pi1 for in-context learning

- Pi1 can even improve Qwen2.5-Math-7B's MATH500 from 51.0 -> 75.4, and OlympiadBench from 18.2 -> 41.3 with in-context learning!!
- Perform much better than Qwen's official 4 examples on these two models

Table 13: π_1 even performs well for in-context learning on Qwen2.5-Math-7B.

Dataset	Method	MATH 500	AIME 2024	AMC 2023	Minerva Math	Olympiad- Bench	AIME 2025	Avg.	
Qwen2.5-Math-1.5B									
$NA \atop \{\pi_1\}$	NA RLVR	36.0 72.8	6.7 15.4	28.1 51.6	8.1 29.8	22.2 33.5	4.6 7.1	17.6 35.0	
$\{\pi_1\}$ Qwen official 4 examples for MATH500 Qwen official Example 1 for MATH500	In-Context In-Context In-Context	59.0 49.8 34.6	8.3 1.7 2.5	34.7 16.9 14.4	19.9 19.9 12.1	25.6 19.9 21.0	5.4 0.0 0.8	25.5 18.0 14.2	
	Qwe	n2.5-Matl	1-7B						
NA $\{\pi_1\}$	NA RLVR	51.0 79.2	12.1 23.8	35.3 60.3	11.0 27.9	18.2 39.1	6.7 10.8	22.4 40.2	
$\{\pi_1\}$ Qwen official 4 examples for MATH500 Qwen official Example 1 for MATH500	In-Context In-Context In-Context	75.4 59.2 54.0	15.8 4.2 4.2	48.4 20.9 23.4	30.1 20.6 18.4	41.3 24.4 21.2	0.8 2.1	37.4 21.7 20.6	

Pi1 for in-context learning

Still tricky:

- Not work for all models, like fail on Qwen2.5-Math-72B and Llama3.2-3B-Instruct (slightly worse than Qwen's official 4 examples)
- **Highly example-dependent**. Pi13 works well on RLVR, but fail on in-context learning (worse than original zero-shot learning)

Application: Does RLVR has high label robustness?

• In RLVR training, 1100 data with wrong labels + 100 data with correct labels can performs worse than 1 data with correct label.

Table 15: **Influence of Random Wrong Labels.** Here "Error Rate" means the ratio of data that has the random wrong labels.

Dataset	Error Rate	MATH 500	AIME 2024	AMC 2023	Minerva Math	Olympiad- Bench	AIME 2025	Avg.
NA	NA	36.0	6.7	28.1	8.1	22.2	4.6	17.6
			Qwen2.5	-Math-1.	5B + GRPO			
DSR-sub	0%	73.6 71.8	17.1	50.6	32.4	33.6	8.3	35.9
DSR-sub	60%		17.1	47.8	29.4	34.4	7.1	34.6
${\operatorname{DSR ext{-}sub}} \{\pi_1\}$	90%	67.8	14.6	46.2	21.0	32.3	5.4	31.2
	0%	72.8	15.4	51.6	29.8	33.5	7.1	35.0
			Qwen2.	5-Math-1	.5B + PPO			
DSR-sub	0%	72.8	19.2	48.1	27.9	35.0	9.6	35.4
DSR-sub	60%	71.6	13.3	49.1	27.2	34.4	12.1	34.6
${\operatorname{DSR ext{-}sub}} \{\pi_1\}$	90%	68.2	15.8	50.9	26.1	31.9	4.6	32.9
	0%	72.4	11.7	51.6	26.8	33.3	7.1	33.8

Discussion

- Base models already has strong reasoning capability, and its prior affects
 a lot for the RLVR stage.
- How to select/curate proper data for RLVR is critical
 - 1-shot RLVR works does not necessarily means that scaling RL dataset is useless
- How to understand 1-shot RLVR and post-saturation generalization?
 - policy loss has implicit generalization
- Better exploration (entropy loss is unstable).
- Other domain (code) and application (label robustness)

Spurious Rewards: Rethinking Training Signals in RLVR

Rulin Shao^{1*} Shuyue Stella Li^{1*} Rui Xin^{1*} Scott Geng^{1*} Yiping Wang¹
Sewoong Oh¹ Simon Shaolei Du¹ Nathan Lambert² Sewon Min³ Ranjay Krishna^{1,2}
Yulia Tsvetkov¹ Hannaneh Hajishirzi^{1,2} Pang Wei Koh^{1,2} Luke Zettlemoyer¹

¹University of Washington ²Allen Institute for Artificial Intelligence

³University of California, Berkeley
{rulins,stelli,rx31,sgeng}@cs.washington.edu

GitHub Repo

REASONING OR MEMORIZATION? UNRELIABLE RESULTS OF REINFORCEMENT LEARNING DUE TO DATA CONTAMINATION

```
Mingqi Wu<sup>1*</sup>, Zhihao Zhang<sup>12*</sup>, Qiaole Dong<sup>1*</sup>, Zhiheng Xi<sup>1</sup>, Jun Zhao<sup>1</sup>, Senjie Jin<sup>1</sup>, Xiaoran Fan<sup>1</sup>, Yuhao Zhou<sup>1</sup>, Huijie Lv<sup>1,2</sup>, Ming Zhang<sup>1</sup>, Yanwei Fu<sup>1</sup>, Qin Liu<sup>3</sup>, Songyang Zhang<sup>2</sup>, Qi Zhang<sup>1,2†</sup>
<sup>1</sup> Fudan University
<sup>2</sup> Shanghai Artificial Intelligence Laboratory
<sup>3</sup> University of California, Davis
{qz}@fudan.edu.cn {qinli}@ucdavis.edu
```

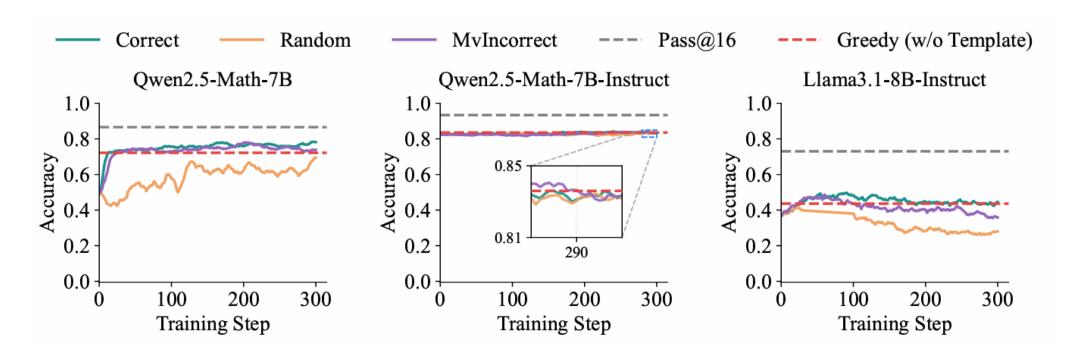


Figure 3: Accuracy on the **MATH-500** for Qwen2.5-Math-7B, Qwen2.5-Math-7B-Instruct, and Llama3.1-8B-Instruct trained with RLVR under various reward signals. Greedy and pass@16 scores are reported *without* template.

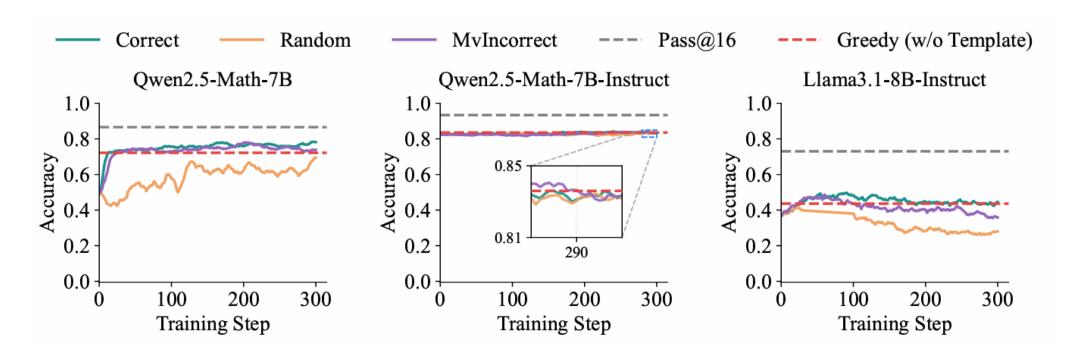


Figure 3: Accuracy on the **MATH-500** for Qwen2.5-Math-7B, Qwen2.5-Math-7B-Instruct, and Llama3.1-8B-Instruct trained with RLVR under various reward signals. Greedy and pass@16 scores are reported *without* template.

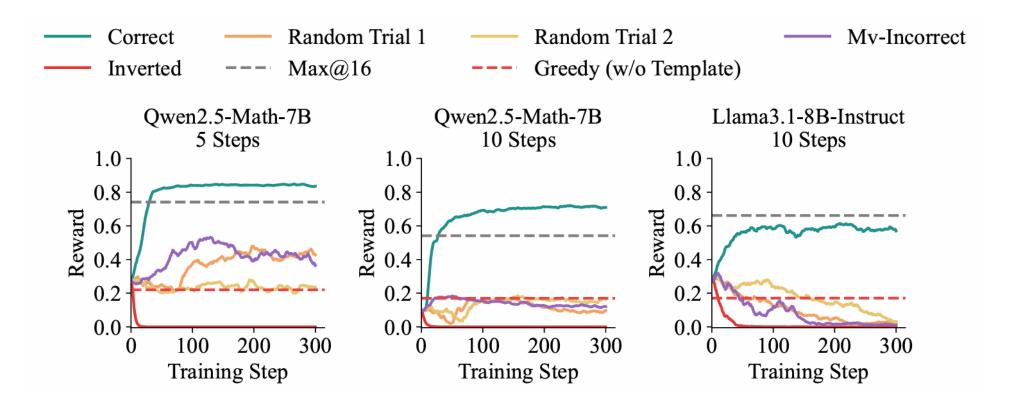


Figure 7: Reward of Qwen2.5-Math-7B and Llama3.1-8B-Instruct on *RandomCalculation*. Results are presented for datasets with 5-step and 10-step calculations.

Table 2: Accuracy (Exact Match, EM) and ROUGE-L scores on several datasets (lower scores in gray) under different prompt prefix ratios in greedy decoding mode without applying chat template, namely *Greedy (w/o Template)* configuration.

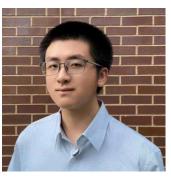
Model	Dataset	Size	80%-Pr	oblem	60%-Pr	oblem	40%-Problem	
		RougeL EM RougeL EM RougeL 83 77.38 55.42 70.25 42.17 75.17 30 74.04 56.67 55.31 20.00 57.72 30 54.71 16.67 34.88 0.00 27.43 ath 272 36.08 2.94 31.22 0.37 29.35 bench 100 42.76 5.00 32.78 0.00 29.97 50 500 66.42 40.20 60.98 21.20 50.36 83 73.24 49.40 64.42 33.73 63.79 30 59.80 30.00 48.69 13.33 44.65 61 30 54.61 10.00 37.59 0.00 30.30 ath 272 35.24 2.94 32.35 0.37 27.89 bench 100 41.15 4.00 32.74 0.00 27.95 50 500 48.33 17.80 40.55 3.80 32.07 83 44.54 4.82 30.62 0.00 27.10 30 50.50 13.33 30.80 0.00 25.20 ath 272 36.24 2.21 29.52 0.00 27.11	EM					
	MATH-500	500	81.25	65.80	78.06	54.60	69.01	39.20
	AMC	83	77.38	55.42	70.25	42.17	75.17	36.14
Qwen2.5-Math-7B	AIME2024	30	74.04	56.67	55.31	20.00	57.72	16.67
	AIME2025	30	54.71	16.67	34.88	0.00	27.43	0.00
	MinervaMath	272	36.08	2.94	31.22	0.37	29.35	0.00
	LiveMathBench	100	42.76	5.00	32.78	0.00	29.97	0.00
	MATH-500	500	66.42	40.20	60.98	21.20	50.36	8.20
	AMC	83	73.24	49.40	64.42	33.73	63.79	28.92
Qwen2.5-7B	AIME2024	30	59.80	30.00	48.69	13.33	44.65	10.00
•	AIME2025	30	54.61	10.00	37.59	0.00	30.30	0.00
	MinervaMath	272	35.24	2.94	32.35	0.37	27.89	0.00
	LiveMathBench	100	41.15	4.00	32.74	0.00	27.95	0.00
	MATH-500	500	48.33	17.80	40.55	3.80	32.07	0.60
	AMC	83	44.54	4.82	30.62	0.00	27.10	0.00
Llama3.1-8B	AIME2024	30	50.50	13.33	30.80	0.00	26.08	0.00
	AIME2025	30	47.04	10.00	33.49	0.00	25.20	0.00
	MinervaMath	272	36.24	2.21	29.52	0.00	27.11	0.00
	LiveMathBench	100	35.55	5.00	31.93	0.00	26.88	0.00

Table 2: Accuracy (Exact Match, EM) and ROUGE-L scores on several datasets (lower scores in gray) under different prompt prefix ratios in greedy decoding mode without applying chat template, namely *Greedy (w/o Template)* configuration.

Model	Dataset	Size	80%-Pr	oblem	60%-Pr	oblem	40%-Pr	oblem
			RougeL	EM	RougeL	EM	EM RougeL	
	MATH-500	500	81.25	65.80	78.06	54.60	69.01	39.20
	AMC	83	77.38	55.42	70.25	42.17	75.17	36.14
Qwen2.5-Math-7B	AIME2024	30	74.04	56.67	55.31	20.00	57.72	16.67
(AIME2025	30	54.71	16.67	34.88	0.00	27.43	0.00
	MinervaMath	272	36.08	2.94	31.22	0.37	29.35	0.00
	LiveMathBench	100	42.76	5.00	32.78	0.00	29.97	0.00

RL Dataset	Dataset Size	MATH 500	AIME 2024	AMC 2023	Minerva Math	Olympiad- Bench	AIME 2025	Avg.
		Qwe	n2.5-Matl	1-7B [<mark>24</mark>]	+ GRPO			
NA DSR-sub	NA 1209	$\begin{array}{ c c c c c }\hline 51.0_{+0.0} \\ \hline 78.6_{+27.6} \\ \hline \end{array}$			$11.0_{+0.0} \\ 33.8_{+22.8}$	$18.2_{+0.0} \\ \underline{41.6}_{+23.4}$	6.7 _{+0.0} 14.6_{+7.9}	22.4 _{+0.0} 42.8 _{+20.4}
	1 2 4	79.2 _{+28.2}	$23.8_{+11.7} \\ 21.7_{+9.6} \\ 22.5_{+10.4}$	$58.8_{\pm 23}$	$35.3_{+24.3}$	$40.9_{+22.7}$	$12.1_{\pm 5.4}$	$41.3_{+18.9}$
Random $\{\pi_1, \ldots, \pi_{16}\}$	16 16		22.1 _{+10.0} 30.4 _{+18.3}	63.1 _{+27.} 62.2 _{+26.}	$31.6_{+20.6} \atop 35.3_{+24.3}$	$35.6_{+17.4} \\ 39.9_{+21.7}$	$\frac{12.9}{9.6_{+2.9}}$	$\begin{array}{ c c c c }\hline 40.2_{+17.8} \\ \underline{42.5}_{+20.1} \\ \end{array}$

- I think data contamination indeed happens, but it would not make 1-shot RLVR's conclusion fail.
- Mid-training or pretraining with open-source training data is really important for research.


Authors

Yiping Wang

Qing Yang

Zhiyuan Zeng

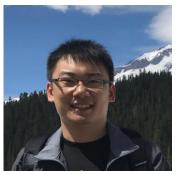
Liliang Ren

Lucas Liu

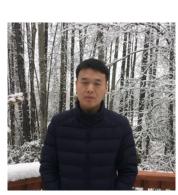
Baolin Peng

Hao Cheng

Xuehai He


Kuan Wang


Jianfeng Gao


Weizhu Chen

Shuohang Wang

Simon S. Du

Yelong Shen

Thank You